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Abstract

The immensely popular logic game Sudoku incorporates a significant number of combin-
atorial concepts. In this essay, I use the mathematical and recreational study of Sudoku as
a motivating example to introduce these concepts. Note that I do not consider techniques or
strategies for playing Sudoku as these are extensively covered elsewhere.

1 Symmetry in Sudoku

Many of the Sudoku puzzles published in newspapers and elsewhere have the property that the
initial pattern of non-empty squares is symmetric.

Most people would intuitively agree that the pattern of clues in the puzzle in Figure 1 is highly
symmetric, but what exactly does symmetric mean and how can we quantify the different types
of symmetry that occur in Sudoku puzzles? The precise answer to these questions leads us to a
branch of mathematics called group theory.
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Figure 1: Symmetric Sudoku
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Figure 2: Rotated Symmetric Sudoku

A shape or pattern is called symmetric if it can be transformed in some way without changing the
way that it looks; for example we can rotate the puzzle of Figure 1 by 90° clockwise and, as shown
in Figure 2, the pattern of clues looks the same.

So what are the possible transformations that can be symmetries of a Sudoku puzzle? Clearly
the transformation must leave the overall square shape of the grid unchanged, so we can start by
considering what operations do this — in technical language we are going to identify the symmetries
of a square.

We have already seen that one of these symmetries is rotation by 90°—we’ll give this operation a
name and call it a.

Now clearly we can repeat this operation, rotating by another 90°, thereby getting a 180° rotation
in total. As this operation arises by performing a twice, we’ll call it aa or just a?.

A B 0 a

We can repeat this once more, getting a 270° rotation that, unsurprisingly, we will call a3.



What happens if we do another 90° rotation? This corresponds to doing a full 360° rotation, which
is the same as doing nothing at all. Should we have a name for the operation “doing nothing”?
Although it may seem superfluous, it turns out to be useful to give this operation a name, and so
we’ll give it the special name e, and we have the equation

a*=e
A B A B
_° .
(Do nothing!)
D C D C

We say that a has order 4 because applying it 4 times brings the square back to its original position
for the first time. Obviously applying it 8 times, or 12 times, or 20 times will also bring the square
back to its original position, but not for the first time. The 180° rotation a? has order 2 because
we only need to apply that twice in order to return to the original position. You can check that a3
has the same order as a.

As well as the rotations, certain reflections are also symmetries of the square. For example, we can
reflect the square through a vertical line, as shown below. We will call this reflection operation b.

One property of symmetries that we used above is that if you combine two or more symmetries,
then you get another one. For example, what happens if we first do a reflection b and then the
rotation a?




This combined operation, which is called ba, has the same effect as a diagonal reflection through
the diagonal line running from the bottom-left to the top-right of the square; this is known as the
anti-diagonal.

It is easy to verify that this diagonal reflection can also be obtained by first doing b and then a3,
so we get the equation
ab = ba®.

Are there any more symmetries of the square? There is obviously at least one more missing, which
is the reflection through a horizontal axis; it will come as no surprise to discover that this can be
obtained as the combination ba?.

So now, we have 8 symmetries of the square as follows:



Name | Symmetry Order
e Identity (do nothing) 1
a 90° clockwise rotation 4
a® 180° rotation 2
a’ 270° clockwise rotation 4
b Reflection in vertical axis 2
ba Reflection in anti-diagonal 2
ba? Reflection in horizontal axis 2
ba? Reflection in main diagonal 2

Now we can work out fairly quickly that no matter what combination of these symmetries we apply
to the square, there is no way of getting a new one that is not on the list. For example, we might
consider what happens if we first reflect in the horizontal axis (ba?) and then in the main diagonal
(ba®). The combined operation is then

ba?ba® = ba*(ab) = ba*b = (ab)b = ae = a
where we twice used the fact that ba® = ab and then that b? = e.
In fact, it turns out that these are all of the symmetries of the square and that any combination

of these symmetries is already in the list — this means that the collection of 8 symmetries listed
above forms a group.

DEFINITION

A group is a set G together with a binary operation - and a special element e € G
satisfying the following properties:

e [CLOSURE| If z, y € G thenz-y € G
o [AssociATIvITY] For all z, y, z € G we have (- y) -z =z (y - 2)
e [IDENTITY] For all z € G we have z-e=e -z =2z

e [INVERSES] For each x € G there is an element z=! € G such that z - 27! =

xl.x=e¢

Normally we simply use xy to represent x - y.

For the symmetries of a square, we have already been using the idea of combining two symmetries
by performing one after the other, and this is the binary operation for this group. This group
contains 8 elements and is called the dihedral group of order 8, usually denoted Dg (though some
authors denote it Dy just to confuse everyone).

For this group of symmetries, the inverse of an element x is essentially the transformation that
“undoes” whatever = did. For example the inverse of the 90° rotation a is the 270° rotation a3,
because doing these two rotations one after another (in either order) is the same as doing nothing.

In words we say that “the inverse of a is the element a® or in symbols that

a ' =dad.



Now a Sudoku puzzle may happen to have all of these operations as symmetries (like the one in
Figure 1) but it is also possible for a puzzle to have just some of them; for example Figure 3 shows a
puzzle whose only non-identity symmetry is reflection in the main diagonal'.We assume that every
puzzle has the identity or “do-nothing” operation as a symmetry, and so the full list of symmetries
for this puzzle is {e, ba’}.
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Figure 3: A puzzle with ba® as its only non-identity symmetry

If puzzles such as the ones in Figure 4 and Figure 5 has the rotation a as a symmetry, then they
must also have a? and a3 (and of course e) as symmetries, and so we cannot find a puzzle with a
as its only non-identity symmetry. Similarly if a puzzle has z and y as symmetries, then it must
also have xy as a symmetry. This means that the set of symmetries of any puzzle must themselves
form a group, which is called a subgroup of Ds.

DEFINITION

A subset H of a group G is called a subgroup of G if the elements of H together
with the binary operation - and identity element e from G form a group.
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Figure 4: A puzzle with symmetry group {e, a,a?, a®}

! Although I found this puzzle, it was first put into this form by “Red Ed” from the www.sudoku.com forums.
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Figure 5: Another puzzle with symmetry group {e, a,a?, a3}

The order of a group is the number of elements in the group, and it is a standard result in group
theory that the order of a subgroup must be a divisor of the order of the group. Therefore seeing
Dg has order 8, it follows that any Sudoku puzzle must have exactly 1, 2, 4 or 8 symmetries. A
subgroup of order 1 must consist only of the single element {e} while a subgroup of order 2 must
consist of e together with one of the 5 possible elements of order 2 (namely a?, b, ba, ba® or ba®)
and the subgroup of order 8 must be the entire dihedral group Ds.

We have already seen that it is possible to have a symmetry group of order 4 consisting only of
rotations (Figure 4 and Figure 5). And if a subgroup contains either a or a®, then it must contain
this entire subgroup. So, are there any other subgroups of order 47 Such a subgroup must contain
e and three other elements that cannot include a or a?®; a quick calculation shows that it cannot
contain three elements from {b, ba, ba?, ba®} because if it did, then some combination of them would
be equal to a. Therefore a subgroup of order 4 must contain e, a? and exactly two elements from
the set {b, ba, ba?,ba®}. Tt is then easy to see that there are precisely two other possibilities for a
group of order 4, which are

{e,a® b,ba’} and {e,a® ba,ba’}.

We can find Sudoku puzzles with exactly these symmetry groups, and these are shown in Figure 6
and Figure 7 (warning: this one is hard to solve).

Now, it is easy to see that if we have a puzzle with a reflection symmetry, for example b, then by
transposing the matrix (that is, swapping rows and columns) we immediately get a puzzle with the
reflection symmetry ba®. So in some sense a horizontal reflection is the same “type” of symmetry
as a vertical reflection. We can make this concept precise by using the group theoretic notion of
conjugacy; two elements z and y in a group G are conjugate if

Yy = 2 lzz
for some z € G. For example, ba? is conjugate to b because (using a as the conjugating element z)

we get
a"(ba*)a = a*ba® = baa® = .
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Figure 6: A puzzle with symmetry group {e, b, a2, ba?}
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Figure 7: A puzzle with symmetry group {e, ba, a?, ba®}



Therefore, treating conjugate subgroups of Dg as representing the same type of symmetry, we end
up with the following 7 distinct possibilities for a symmetric Sudoku puzzle:

Type Order Description Group
Type I 8 Full dihedral symmetry Dy

Type II 4 Full rotational symmetry {e,a,a?,a®}
Type 111 4 Horizontal and vertical reflection {e,b,a% ba®}
Type IV 4 Diagonal and anti-diagonal reflection {e,ba,a? ba’}
Type V 2 180° rotational symmetry {e,a?}
Type VI 2 Horizontal or vertical reflection {e,b} or {e, ba’}
Type VII 2 Diagonal or anti-diagonal reflection | {e,ba} or {e,ba}
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